CORRIM Special Session: Biofuel Environmental Performance

Presented at
Forest Product Society
66th International Convention
June 3, 2012
Washington, DC

Consortium for Research on Renewable Industrial Materials
Research developing life cycle assessments for every stage of processing covering wood products/biofuels and their uses.
Pellets Production Alternatives and Their Impacts

Adam Taylor
Maureen Puettmann
Life-Cycle Inventory for Wood Pellet Manufacturing in Wisconsin

Dr. John F. Katers

Associate Professor, Natural and Applied Sciences (Engineering) Co-Director, Environmental Management and Business Institute (EMBI) University of Wisconsin – Green Bay
LCI of Wood Pellets in the US Southeast

Daniel Reed\(^1\)
Jae-Woo Kim\(^1\)
Rick Bergman\(^2\)
Adam Taylor\(^1\)
David Harper\(^1\)
Don Hodges\(^1\)

P. David Jones\(^3\)
Chris Knowles\(^4\)
Maureen Puettmann\(^5\)

\(^1\)University of Tennessee
\(^2\)Forest Products Laboratory
\(^3\)Mississippi State University
\(^4\)Oregon State University
\(^5\)WoodLife Environmental Consultants, LLC

Funding: Wood Education and Resource Center, Northeastern Area State and Private Forestry, Forest Service, U.S. Department of Agriculture
LCI of Switchgrass Pellets in the US Southeast

Daniel Reed¹
Jae-Woo Kim¹
Adam Taylor¹
David Harper¹

Don Hodges¹
Maureen Puettmann²

¹University of Tennessee
²WoodLife Environmental Consultants, LLC

Funding: Southeastern Sungrant Center
Wisconsin Pellet Fuel Manufacturers

Wisconsin Fuel Pellet Manufacturers
and Forest Land Cover

Forest Lands
- Private Forest
- State Forest
- County Forest
- Forested Wetland
- National Forest

Political Boundaries
- City or Village
- County Border

Fuel Pellet Manufacturers*

*Note - As of July 2008. Not all fuel pellet manufacturers use forest products as their inputs. Several manufacturers use residues from agricultural production or other manufacturers.

Active
- American Wood Fibers
- Bay Lakes Companies, LLC
- Dejno’s Inc.
- Earth Sense Energy Systems
- Elkhorn Industries, Inc.
- Fiber Recovery Inc
- Marth Wood Shaving Supply
- Pellet America Corp
- PJ Murphy Forest Products
- Performance Wood
- Kickapoo Bio Fuels
- Agrecol
- Great Lakes Renewable Energy, Inc.
- Badger Pellet
- Risley Pellet Solutions (see note below)

City
- Schofield
- Oconto Falls
- Kenosha/Antigo
- Dale
- Superior
- Ringle
- Marathon/Peshigo
- Appleton
- Ladysmith
- Seymour
- Viro
- Evansville
- Hayward
- Sheboygan

Tons/year
- 20,000
- 20,000
- N/A
- Repackager
- 36,000
- N/A
- 100,000
- N/A
- 5,000
- 5,000
- 1,000
- N/A

Seeking Permits or Under Construction
- Forest Source
- Indeck Ladysmith, LLC
- Wisconsin Wood Energy Products
- Superior Wood Products
- Inc

Note: A fire burned Risley Pellet Solutions in February 2007. Future status is uncertain.
Life-Cycle Inventory

Three Feedstock Scenarios

• Wood Pellets from Whole Logs:
 – Timber harvested by the pellet manufacturers

• Wood Pellets from Wet Co-Product:
 – Chips from sawmill >35% Moisture

• Wood Pellets from Dry Co-Product:
 – Sawdust and shavings from sawmill <35% Moisture
Boundary Definitions

- Harvested Timber
 - Primary Wood Mill
 - Mill Residues
 - Primary Wood Products
 - Energy Generation
 - Receiving/Handling
 - Size Reduction
 - Drying
 - Pelletizing
 - Wood Fiber
 - System Boundary for On-Site Emissions
 - Premium Wood Pellets
 - System Boundary for cumulative (total) emissions
 - Combustion in Pellet Stove
 - "ENERGY OUTPUT"
 - Water Effluents
 - Air Emissions
 - "MATERIAL OUTPUT"
Fuel Consumption (On-Site)

<table>
<thead>
<tr>
<th>Fuel Consumption by Process of Premium Wood Pellet Production in WI</th>
<th>Wood Pellets from Whole Logs</th>
<th>Wood Pellets from Wet Co-Product</th>
<th>Wood Pellets from Dry Co-Product</th>
<th>WI Weighted Average</th>
<th>% Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Pellet Production</td>
<td>Weighted</td>
<td>Average</td>
<td>Weighted</td>
<td>Average</td>
<td>Weighted</td>
</tr>
<tr>
<td>Diesel</td>
<td>1.84</td>
<td>1.67</td>
<td>0.81</td>
<td>1.21</td>
<td>2.59</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Propane</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>Electricity</td>
<td>187.83</td>
<td>173.58</td>
<td>143.01</td>
<td>159.56</td>
<td>31.67</td>
</tr>
<tr>
<td>Wood (Oven-Dry)</td>
<td>149.78</td>
<td>136.10</td>
<td>3.66</td>
<td>59.62</td>
<td>65.74</td>
</tr>
<tr>
<td>Total Fuel Energy</td>
<td>MJ</td>
<td>3743.19</td>
<td>3411.64</td>
<td>619.38</td>
<td>1813.79</td>
</tr>
</tbody>
</table>

Transportation

Diesel Transportation	tkm	99.29	231.01	241.40	199.87	100
Total Fuel Energy	MJ	99.29	231.01	241.40	199.87	100
Total On-Site Energy	MJ	3842.48	3642.65	860.78	2013.66	x
Cradle-To-Gate Fuel Consumption

<table>
<thead>
<tr>
<th>Cradle-to-Gate Inputs per Short Ton Premium Wood Pellets Output</th>
<th>Wood Pellets from Whole Logs</th>
<th>Wood Pellets from Wet Co-Product</th>
<th>Wood Pellets from Dry Co-Product</th>
<th>Wisconsin Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Usage (Cradle-to-Gate)</td>
<td>MJ %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity (kWh)</td>
<td>187.83</td>
<td>222.69</td>
<td>315.60</td>
<td>270.21</td>
</tr>
<tr>
<td>Diesel (Liters)</td>
<td>9.76</td>
<td>7.29</td>
<td>11.07</td>
<td>11.34</td>
</tr>
<tr>
<td>Natural Gas (Liters)</td>
<td>0.07</td>
<td>20.25</td>
<td>47.51</td>
<td>31.50</td>
</tr>
<tr>
<td>Propane (Liters)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>Gasoline (Liters)</td>
<td>0.13</td>
<td>0.24</td>
<td>0.57</td>
<td>0.48</td>
</tr>
<tr>
<td>Wood Fuel (kg)</td>
<td>149.78</td>
<td>136.17</td>
<td>164.23</td>
<td>154.57</td>
</tr>
<tr>
<td>Transportation (tkm)</td>
<td>99.29</td>
<td>231.01</td>
<td>241.40</td>
<td>199.87</td>
</tr>
<tr>
<td>Total Fuel Energy (MJ)</td>
<td>4,154</td>
<td>4,048</td>
<td>5,113</td>
<td>4,697</td>
</tr>
<tr>
<td>Total Fuel Energy (BTU)</td>
<td>3,936,915</td>
<td>3,836,517</td>
<td>4,845,977</td>
<td>4,452,034</td>
</tr>
</tbody>
</table>

HHV of one short ton of premium wood pellet fuel: 17,303 MJ or 16,400,000 BTU
Fossil Fuel Inputs per MJ Output

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>0.001</td>
<td>0.140</td>
<td>0.013</td>
<td>0.030</td>
</tr>
<tr>
<td>Nat Gas</td>
<td>0.002</td>
<td>0.052</td>
<td>1.383</td>
<td>0.058</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>0.032</td>
<td>0.066</td>
<td>0.011</td>
<td>1.429</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.000</td>
<td>0.050</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>Total:</td>
<td>0.035</td>
<td>0.307</td>
<td>1.411</td>
<td>1.527</td>
</tr>
</tbody>
</table>
GHG Emissions per MJ of Residential Heat
<table>
<thead>
<tr>
<th>INPUTS</th>
<th>Materials</th>
<th>Units</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood residues</td>
<td>kg</td>
<td></td>
<td>907</td>
</tr>
<tr>
<td>Polyethylene (50 bags)</td>
<td>kg</td>
<td></td>
<td>5.01</td>
</tr>
<tr>
<td>Corn oil (lubricant)</td>
<td>L</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>Ground water</td>
<td>L</td>
<td></td>
<td>21.70</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh</td>
<td></td>
<td>132.12</td>
</tr>
<tr>
<td>Liquefied petroleum gas</td>
<td>L</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Wood residues to boiler</td>
<td>kg</td>
<td></td>
<td>29.97</td>
</tr>
</tbody>
</table>
Wood (normalized impact)

Switchgrass (normalized to wood)

Smog
Respiratory effects
Acidification
Global warming potential

- Wood
- Oil
- Electricity
- Bag
- Switchgrass
- Oil
- Transport
- Natural gas
- Electricity

Wood vs. Switchgrass (normalized impact)
Bio-energy in 1 ton of switchgrass pellets (16.4 GJ)
- Fossil energy to grow SG (0.6 GJ)
- Fossil energy to pelletize SG (2.5 GJ)

Bio-energy in 1 ton of wood pellets (17.3 GJ)
- Fossil energy to make the wood residues (3.9 GJ)
- Fossil energy to pelletize (2.3 GJ)

Bio-energy in 1 ton of wood pellets (17.3 GJ)
- Fossil energy to make the wood residues - value allocation (0.08 GJ)
- Fossil energy to pelletize (2.3 GJ)
Summary of Results

• Wood pellets use (73%, 82%, 129%, much!) less fossil fuel inputs than natural gas

• Electricity for pelletization is important
 – About 130 kWh/Mg

• With mass allocation
 – Wood Pellets from roundwood/switchgrass have the lesser environmental footprint
 – Should use value allocation
Questions and Discussion

Presented at
Forest Product Society
66th International Convention
June 3, 2012
Washington, DC

Consortium for Research on Renewable Industrial Materials
Research developing life cycle assessments for every stage of processing covering wood products/biofuels and their uses.
CORRIM Special Session: Biofuel Environmental Performance

Presented at
Forest Product Society
66th International Convention
June 3, 2012
Washington, DC

Consortium for Research on Renewable Industrial Materials
Research developing life cycle assessments for every stage of processing covering wood products/biofuels and their uses.